Что такое рендер или рендеринг

17 ноября 2019 г.

Что такое рендер?

Дословный перевод с английского языка слова рендеринг — визуализация или отрисовка. В нашем случае речь идет преобразовании трехмерной сцены в статическую картинку, или секвенцию кадров (секвенция кадров, это тип сохранения множества последовательных кадров если говорить о рендеринге анимации). В программах для создания 3d контента (типа 3ds max, cinema4d, sketch up и др.) рендеринг сцен происходит с помощью математических просчетов. Рендер - соотв. это изображение полученное с помощью математических просчетов на ПК.

Рендеринг - это одна из основных подтем компьютерной 3D-графики, и на практике она всегда связана с остальными. В «графическом конвейере» это последний важный шаг, дающий окончательный вид любой 3d сцене. С возрастающей потребностью компьютерной графики начиная с 1970-х годов, она стала более отчетливым предметом.

Сфера применения

Рендеринг сцен используется в: компьютерных видеоиграх, симуляторах, фильмах, рекламных роликах, телевизионных спецэффектах и архитектурной 3D визуализации. Каждая сфера деятельности использует различный баланс функций и методов просчета. Рассмотрим пару примеров применения рендеринга более детально:

Что такое рендер?

В этой рекламе производитель заменил настоящую пачку чипсов на 3d модель с последующим рендером. Это позволило сэкономить много времени при производстве рекламного ролика на разные рынки сбыта. Поскольку пачка чипсов для разных стран будет выглядеть по-разному, нет необходимости снимать сотни дублей с разными вариантами пачки. Достаточно одного ролика, а пачку теперь можно сделать любую.

Что такое рендер или рендеринг?

Что такое рендер или рендеринг?

Теперь на телеэкране реальным можно сделать все и всех. Нет необходимости в макетах, манекенах, париках, гриме. 3d модель с последующим рендерингом экономит время и средства необходимые на производство спец-эффектов.

Что такое рендер или рендеринг?

Рендер студии Viarde, сделанный для одной из мебельных фабрик. Производителям мебели, света, техники т.п., больше нет необходимости оплачивать дорогостоящие фото студии, чтобы наилучшим образом представить свои продукты. За несколько дней и с намного меньшей стоимостью это сделают студии занимающиеся 3d визуализацией.

Системы рендеринга

Системы рендеринга которые используются 3д редакторами для просчета (отрисовки) визуализации бывают встроенные в программу или внешние подключаемые (устанавливаться отдельно). Чаще внешние системы рендеринга имеют лучше качество визуализации чем встроенные, потому что они разрабатываться не зависимо от 3Д редактора, и команда разработчиков работает только над усовершенствованием своего продукта не отвлекаясь на работу с 3д редактором. У команд разрабатывающих внешние редакторы больше времени и возможностей на то, чтобы сделать свой продукт лучшим на рынке. Но из-за этого чаще всего, в отличие от встроенных рендер систем за них придется заплатить дополнительно.

Внутри рендеринг представляет собой тщательно разработанную программу, основанную на выборочной смеси дисциплин, связанных с: физикой света, визуальным восприятием, математикой и разработкой программного обеспечения.

В случае 3D-графики рендеринг может выполняться медленно, как в режиме предварительного рендеринга (pre-rendering), так и в режиме реального времени (real time rendering).

Предварительный рендеринг - это метод визуализации который используется в средах, где скорость не имеет значения, а вычисления изображения выполняются с использованием многоядерных центральных процессоров, а не выделенного графического оборудования. Эта техника рендеринга в основном используется в анимации и визуальных эффектах, где фотореализм должен быть на самом высоком уровне.

Рендеринг в реальном времени: выдающаяся техника рендеринга, используемая в интерактивной графике и играх, где изображения должны создаваться в быстром темпе. Поскольку взаимодействие с пользователем в таких средах является высоким, требуется создание изображения в реальном времени. Выделенное графическое оборудование и предварительная компиляция доступной информации повысили производительность рендеринга в реальном времени.

Рендеринг в архитектурной 3D визуализации

На сегодняшний день самыми популярными и качественными системами для архитектурной 3d визуализации являются Vray и Corona Renderer. Обе системы принадлежат одному разработчику Chaos Group (Болгария).

Что такое рендер или рендеринг?

Vray появился еще в 2000 году и хорошо себя зарекомендовал во многих сферах визуализации благодаря своей гибкости и широкому набору инструментов для включения в рабочий процесс различных студий, будь то анимационные или архитектурные компании.

Основные достоинства V-Ray:

1. Поддерживает сетевой рендер несколькими компьютерами.

2. Очень широкий спектр настроек для разных задач связанных с трехмерной графикой.

3. Огромный набор материалов.

4. Поддерживает большой набор пассов для композинга картинки или видео.

Corona Renderer - это внешний современный высокопроизводительный фотореалистичный рендер, доступный для Autodesk 3ds Max, MAXON Cinema 4D. Разработка Corona Renderer началась еще в 2009 году как сольный студенческий проект Ондржея Карлика в Чешском техническом университете в Праге. С тех пор Corona превратилась в коммерческий проект, работающий полный рабочий день, после того как Ондржей основал компанию вместе с бывшим художником компьютерной графики Адамом Хотови и Ярославом Крживанеком, доцентом и исследователем в Карловом университете в Праге. В августе 2017 года компания стала частью Chaos Group, что позволило дальнейшее расширение и рост. Несмотря на свой молодой возраст, Corona Renderer стал очень конкурентноспособным рендером, способным создавать высококачественные результаты.

Главное достоинство Corona Renderer это очень реалистичная визуализация при простых настройках системы. Она отлично подойдет для новичков, перед которыми стоят простые задачи.

Скорость рендера

Рендер системы при работе как все остальные программы установленные на компьютер требует для просчета изображения определенные ресурсы вашего ПК. В основном требуется мощность процессора и количество оперативной памяти. Такие рендер системы называются CPU. Есть еще GPU, это рендер системы просчитывающие изображения с помощью видеокарты. Например Vray имеет возможность рендерить и CPU и GPU.

Время рендеринга зависит от некоторых основных факторов: сложности сцены, количества источников света, наличия высокополигональных моделей, прозрачных или отражающих материалов.

Поэтому рендеринг требует больших мощностей. Обычный офисный ПК не подойдет для этой задачи. Если вы собираетесь рендерить, вам нужна особая сборка компьютера, что бы этот процесс проходил быстро. Все рендер системы имеют разные настройки, где-то больше где, то меньше. Их можно менять что бы получить картинку быстрее, но при этом придется экономить на ее качестве.

Что такое рендер или рендеринг?

Лучший способ для того чтобы, сократить время просчета картинки это использовать сетевой рендеринг или готовую рендер ферму в интернете. Можно распределить рендер между разными компьютерами через локальную сеть или интернет. Для этого все компьютеры участвующие в процессе должны иметь такую же программу для рендеринга, такой же 3д редактор и такие же плагины, как и основной компьютер с которого запускается рендер.

История и основы вычислительных процессов рендеринга

За многие годы разработчики исследовали многие алгоритмы рендеринга. Программное обеспечение, используемое для рендеринга, может использовать ряд различных методов для получения конечного изображения. Отслеживание и просчет каждого луча света в сцене было бы непрактичным и потребовало бы огромного количества времени. Даже отслеживание и просчет части лучей, представляет собой достаточно большой обьем для получения изображения и занимает слишком много времени, если сэмплы (сэмпл - просчет одного луча света) не ограничены разумным образом.

Таким образом, появилось четыре "семейства" более эффективных методов моделирования переноса света: растеризация, включая scanline rendering, рассматривает объекты в сцене и проецирует их для формирования изображения без возможности генерирования эффекта перспективы точки обзора; При Ray casting сцена рассматривается как наблюдаемая с определенной точки зрения, вычисляя наблюдаемое изображение, основываясь только на геометрии и основных оптических законах интенсивности отражения, и, возможно, используя методы Монте-Карло для уменьшения артефактов; radiosity использует - элементную математику для моделирования диффузного распространения света от поверхностей; ray tracing аналогична ray casting, но использует более совершенное оптическое моделирование и обычно использует методы Монте-Карло для получения более реалистичных результатов со скоростью, которая часто на несколько порядков медленнее.

Самое современное программное обеспечение сочетает в себе два или более методов просчета света для получения достаточно хороших результатов при разумных затратах времени.

Scanline рендеринг и растеризация

Высокоуровневое представление изображения обязательно содержит элементы, отличные от пикселей. Эти элементы называются примитивами. Например, на схематическом рисунке отрезки и кривые могут быть примитивами. В графическом пользовательском интерфейсе окна и кнопки могут быть примитивами. В 3D-рендеринге треугольники и многоугольники в пространстве могут быть примитивами.

Если pixel-by-pixel подход к визуализации нецелесообразен или слишком медленен для какой-либо задачи, тогда primitive-by-primitive подход к визуализации может оказаться полезным. Здесь каждый просматривает каждый из примитивов, определяет, на какие пиксели изображения он влияет, и соответственно модифицирует эти пиксели. Это называется растеризацией, и это метод рендеринга, используемый всеми современными видеокартами.

Растеризация часто быстрее, чем pixel-by-pixel рендеринг. Во-первых, большие области изображения могут быть пустыми от примитивов; Растеризация будет игнорировать эти области, но рендеринг pixel-by-pixel должен проходить через них. Во-вторых, растеризация может улучшить когерентность кэша и уменьшить избыточную работу, используя тот факт, что пиксели, занятые одним примитивом, имеют тенденцию быть смежными в изображении. По этим причинам растеризация обычно является подходящим выбором, когда требуется интерактивный рендеринг; однако, pixel-by-pixel подход часто позволяет получать изображения более высокого качества и является более универсальным, поскольку он не зависит от такого количества предположений об изображении, как растеризация.

Растеризация существует в двух основных формах, не только когда визуализируется вся грань (примитив), но и когда визуализируются все вершины грани, а затем пиксели на грани, которые лежат между вершинами, визуализированными с помощью простого смешивания каждого цвета вершины с следующим. Эта версия растеризации обогнала старый метод, поскольку позволяет графике течь без сложных текстур. Это означает, что вы можете использовать более сложные функции taxing shading видеокарты и при этом добиться лучшей производительности, потому что вы освободили место на карте, так как сложные текстуры не нужны. Иногда люди используют один метод растеризации на одних гранях, а другой метод - на других, основываясь на угле, под которым это грань встречается с другими соединенными гранями, это может увеличить скорость и не немного снизить общий эффект изображений.

Что такое рендер или рендеринг?

Ray casting

Ray casting в основном используется для моделирования в реальном времени, такого как те, которые используются в трехмерных компьютерных играх и мультипликационных анимациях, где детали не важны или где более эффективно вручную подделывать детали, чтобы получить лучшую производительность на этапе вычислений. Обычно это тот случай, когда нужно анимировать большое количество кадров. Результаты имеют характерный «плоский» внешний вид, когда никакие дополнительные приемы не используются, как если бы все объекты на сцене были окрашены матовым покрытием или слегка отшлифованы.

Моделируемая геометрия анализируется попиксельно (pixel-by-pixel), построчно (line by line), с точки зрения наружу, как если бы лучи отбрасывались от точки взгляда. Там, где объект пересекается, значение цвета в точке может быть оценено с использованием нескольких методов. В самом простом случае значение цвета объекта в точке пересечения становится значением этого пикселя. Цвет можно определить по текстурной карте. Более сложный метод заключается в изменении значения цвета с помощью коэффициента освещения, но без расчета отношения к моделируемому источнику света. Чтобы уменьшить артефакты, количество лучей в слегка разных направлениях может быть усреднено.

Может быть дополнительно использовано грубое моделирование оптических свойств: обычно очень простое вычисление луча от объекта к точке зрения. Другой расчет сделан для угла падения световых лучей от источника(ов) света. И из этих и указанных интенсивностей источников света вычисляется значение пикселя. Или можно использовать освещение, построенное по алгоритму radiosity. Или их сочетание.

Radiosity

Radiosity - это метод, который пытается симулировать способ, которым отраженный свет, вместо того, чтобы просто отражаться от другой поверхности, также освещает область вокруг него. Это обеспечивает более реалистичное затенение и, кажется, лучше отражает «атмосферу» внутренней сцены. Классическим примером является способ, которым тени «обнимают» углы комнат.

Оптическая основа симуляции состоит в том, что некоторый рассеянный свет из данной точки на данной поверхности отражается в большом спектре направлений и освещает область вокруг него.

Техника симуляции может варьироваться по сложности. Многие изображения имеют очень приблизительную оценку радиуса, просто слегка освещая всю сцену с помощью фактора, известного как окружение. Однако, когда расширенная оценка Radiosity сочетается с высококачественным алгоритмом Ray tracing, изображения могут демонстрировать убедительный реализм, особенно для интерьерных сцен.

В расширенной симуляции radiosity рекурсивные, конечно-элементные алгоритмы «отражают» свет назад и вперед между поверхностями в модели, пока не будет достигнут некоторый предел рекурсии. Таким образом, окраска одной поверхности влияет на окраску соседней поверхности, и наоборот. Результирующие значения освещенности по всей модели (иногда в том числе для пустых пространств) сохраняются и используются в качестве дополнительных входных данных при выполнении расчетов в модели наведения луча или трассировки лучей.

Из-за итеративного/рекурсивного характера техники сложные объекты особенно медленно подражают. Расширенные расчеты radiosity могут быть зарезервированы для расчета атмосферы комнаты, от света, отражающегося от стен, пола и потолка, без изучения вклада, который сложные объекты вносят в radiosity, или сложные объекты могут быть заменены в вычислении radiosity более простым объекты одинакового размера и текстуры.

Если в сцене наблюдается незначительная перегруппировка объектов radiosity, одни и те же данные radiosity могут повторно использоваться для ряда кадров, что делает radiosity эффективным способом улучшения плоскостности приведения лучей без серьезного влияния на общее время рендеринга на кадр. Из-за этого, radiosity стал ведущим методом рендеринга в реальном времени, и был использован для начала и создания большого количества известных недавних полнометражных анимационных 3D-мультфильмов.

Что такое рендер или рендеринг?

Ray tracing

Ray tracing является продолжением той же технологии, которая была разработана при Scanline и Ray casting. Как и те, он хорошо обрабатывает сложные объекты, и объекты могут быть описаны математически. В отличие от Scanline и Ray casting, Ray tracing почти всегда является методом Монте-Карло, который основан на усреднении числа случайно сгенерированных образцов из модели.

В этом случае сэмплы представляют собой воображаемые лучи света, пересекающие точку обзора от объектов в сцене. Это в первую очередь полезно, когда сложный и точный рендеринг теней, преломление или отражение являются проблемами.

В конечном итоге, при качественном рендеринге работы с трассировкой лучей несколько лучей обычно снимаются для каждого пикселя и прослеживаются не только до первого объекта пересечения, но, скорее, через ряд последовательных «отскоков», используя известные законы оптики, такие как «угол падения равен углу отражения» и более продвинутые законы, касающиеся преломления и шероховатости поверхности.

Как только луч либо сталкивается с источником света, или, более вероятно, после того, как было оценено установленное ограничивающее количество отскоков. Тогда поверхностное освещение в этой конечной точке оценивается с использованием методов, описанных выше, и изменения по пути через различные отскоки оцениваются для оценить значение, наблюдаемое с точки зрения. Это все повторяется для каждого сэмпла, для каждого пикселя.

В некоторых случаях в каждой точке пересечения может быть создано несколько лучей.

Как метод грубой силы, Ray tracing была слишком медленной, чтобы рассматривать ее в режиме реального времени, и до недавнего времени она была слишком медленной, чтобы даже рассматривать короткие фильмы любого уровня качества. Хотя она использовалась для последовательностей спецэффектов и в рекламе, где требуется короткая часть высококачественного (возможно, даже фотореалистичного) материала.

Однако усилия по оптимизации для уменьшения количества вычислений, необходимых для частей работы, где детализация невелика или не зависит от особенностей трассировки лучей, привели к реалистической возможности более широкого использования Ray tracing. В настоящее время существует некоторое оборудование с аппаратной ускоренной трассировкой лучей, по крайней мере, на этапе разработки прототипа, и некоторые демонстрационные версии игр, в которых показано использование программной или аппаратной трассировки лучей в реальном времени.

Пара интересных фактов про рендеринг

Например фильм «Аватар» Джеймса Камерона рендерился на 34 стойках HP с 32 блейдами HP Proliant BL2x220c в каждой 40 000 процессорных ядер и 104 Тб RAM. При такой мощности на один кадр уходило около 50-ти часов.

А известная мультипликационная компания Pixar, которая сделала такие мультфильмы как «Волли» и «Тачки», разработала для своих проектов собственную рендер систему которая называется Pixars RenderMan. Этот рендер направлен на быстрый просчет сложных анимационных эффектов, таких как: вода, облака, шерсть, волосы и другое.

Итог

С каждым днем рендер системы используются все больше в разных сферах деятельности. Для фильмов, мультфильмов, архитектуры, рекламы, промышленности, автомобилестроения и многие другое. Так что если вы видите где, то статическое изображение или анимацию, вполне возможно что это результат рендеринга.

Просмотров: 4577

Войтичтобы голосовать или комментировать
Ещё почитать
Что такое CG или CGI и их применение

Что такое CG или CGI и их применение

Компьютерные изображения (известные как CG и CGI) стали очень популярными за последние два десятилетия, и их важность и использование в будущем еще больше возрастут из-за их широкого применения в различных областях.

25 февраля
8 причин, почему 3D рендеринг лидирует на рынке услуг

8 причин, почему 3D рендеринг лидирует на рынке услуг

Хотя маркетинг 3D-рендеринга переживает удивительный рост, многие эксперты все еще озадачены этой тенденцией. Давайте внимательнее посмотрим на это развитие и выясним причины этого.

23 декабря 2019 г.
История Архитектурной 3D визуализации

История Архитектурной 3D визуализации

Если вы удивляетесь, как универсальный язык всех наций - визуализация, держалась тысячи лет и превратилась во что-то невероятное и полезное, но при этом доступно каждому. Или вам просто интересно почему в каждой версии 3ds max в базовых моделях есть модель чайника? То эта статья для вас.

27 августа 2019 г.
Ваш голос учтен